Unit-VI: Detection of Radar Signals in Noise: Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation Function and Cross-correlation Receiver, Efficiency of Non-Matched Filters, Matched Filter with Non-white Noise.

Radar Receivers: Noise Figure and Noise Temperature (8 L)

Expected Outcomes:

Students will be able to

- 1. Compare the working of different types of radars.
- 2. Analyze the statistical parameters of the Noise and Radar cross-section of targets
- 3. Distinguish the fixed and moving targets using different types of radar systems
- 4. Explain various techniques employed in Phased array and Imaging radar for target detection.
- 5. Explain various techniques employed in radar receivers for the detection of signals in noise.

Text Books:

- 1. Merrill Skolnik:Introduction to Radar Systems; Tata McGraw-Hill, 2007, 2/e.
- 2. Mark A Richards: Fundamentals of Radar signal processing; M C Graw Hill 2014, 2/e.

Suggested Reading:

- 1. Ramon Nitzberg, "Radar Signal Processing and Adaptive Systems", Artech House, 1999.
- 2. Byron Edde "Radar: Principles, Technology, Applications". Pearson Education, 2004.
- 3. Radar Principles Peebles. Jr., P.Z. Wiley. New York, 1998.
- 4. Principles of Modem Radar: Basic Principles Mark A. Rkhards, James A. Scheer, William A. Holm. Yesdee, 2013.
- 5. Harold Mott, "Remote Sensing with Polarimetric Radar" IEEE Press, 2007.
- 6. Nathanson, F E, "Radar Design Principles" Scitech Publishing, 2002.

ECx5149 Terahertz Engineering L-T-P: 3-0-0; Cr: 03
--

Course Objectives: To demonstrate the concept of THz principles and its components and design applicability for different Industrial and communication applications.

COURSE CONTENT:

Unit-I: Terahertz Overview and Principles: Electromagnetic Radiation and Propagation Fundamentals, Terahertz Principles, Towards Terahertz Communication Systems, Key Technological Issues for Terahertz Technology, Fundamental Limits, Terahertz Technology Applications and Opportunities. (8 L)

Unit-II: THz Detectors: Single-Photon Detectors, Microbolometers, Golaycells, Pyroelectric Detectors, Diode Detectors, and Focal-Plane Arrays.(6 L)

Unit-III: THz Sources: Vacuum-Electronics-based, Semiconductor-based, Photoconduction-based and Nonlinearity-based. (6 L)

Unit-IV: THz Electronic Components: Waveguides, Metamaterials, Filters and Modulators. (8 L)

Unit-V: Sensing with THz Radiation: THz Spectroscopy, Imaging and Tomography (6 L)
Unit-VI: THz Applications: Biology, Medicine, Space Sciences, Pharmaceutical Industry, Security and Communications. (8 L)

Course Outcomes:

- 1. To understand the concept of THz principles and components.
- 2. To learn the concept of THz Electronic Components, THz sources and THz detectors.
- 3. Apply the concept of THz for imaging, spectroscopy and tomography for different applications.
- 4. Analyse the THZ systems knowledge for different Industrial and communication applications.

Text Book(s):

- 1. Terahertz Technology: Fundamentals and applications, Rostami, Ali Rasooli, Hassan Baghban, New York, Springer, 2011, *ISBN* 978-3-642-15793-6.
- 2. RE Miles,P Harisson, D Lippens "Terahertz Sources and Systems ",Springer Science+Business media, BV 2000, ISBN 978-94-010-0824-2.
- 3. Ho-Jin Song, Tadao Nagatsuma, "Handbook of Terahertz Technologies, Devices and applications", Pan Stanford Publishing Pte. Ltd. 2015, ISBN: 9789814613088.

Reference Books:

- 1. "Sensing with Terahertz Radiation", Daniel Mittleman, ed. (Springer, 2004)
- 2. "Terahertz Spectroscopy: Principles and Applications" (Optical Science and Engineering Series), Susan L. Dexheimer, ed. (CRC Press, Taylor and Francis group, 2007)
- 3. Terahertz Sensing Technology: Emerging Scientific Applications & Novel Device Concepts "(Selected Topics in Electronics and Systems, Vol. 32), Dwight L. Woolard, William R. Loerop, Michael Shur (Eds), (World Scientific, 2003)

ECx5150	Embedded Systems Design	L-T-P: 3-0-0; Cr: 03

Pre-Requisites : Basic of Microprocessor and Microcontroller, Computer Organization and architecture, Programming through C

Course Objective:

- 1. The goal of this course is to understand the concept of embedded system design, its fundamental requirements of embedded systems, and the interaction between hardware and software in embedded systems.
- 2. To expose the students to various smart sensors. Actuators, Input-output device mechanisms, Communication interface/Task Communication, embedded systems software, real-time OS, system verification, and ARM microcontroller.
- 3. To make the students familiar with the programming concepts of Embedded development as well as its real-time applications.